Las Webcam Ezonics EZCam USB II UVT8532, Genius VideoCAM Look y iLook 300

La noche del 23 de marzo de 2009 tome videos de una ventana de un edificio que tenia en frente, a foco primario (750 mm) para comparar esta cámara con la Genius NB, las condiciones para los videos fueron las mismas: no diafragme el telescopio, 10 segundos de duración. capturados con IRIS a 640 X 480. ambos tienen 146 cuadros. pero la Genius NB a pesar de teniendo la seguir meior resolución y mas aumento por tener píxeles mas pequeños, presento 39 cuadros útiles y la Ezonics 69, es decir la Genius es mas lenta para capturar cuadros útiles, además de ser muy evidente la cantidad de píxeles con ruido. En el proceso de imagen para videos capturados con la Genios, el ruido compromete mucho los detalles cuando se manipulan los canales Wavelets para microcontraste, mientras que en la Ezonics se pueden ajustar sin verse los píxeles de ruido, las dos cámaras poseen un sensor CMOS de 352 X 288, muy conveniente para la disponer de alta velocidad en la computadora.

Oliver Christopher López, <u>olichris26@gmail.com</u> Complejo Astronómico Andrés Bello <u>www.olichris.jimdo.com</u>

Después de trabajar largo tiempo con la webcam **Genius VideoCAM NB300** quería una webcam de mejores prestaciones, y en el año 2009 comencé a buscar de nuevo, le comente a un amigo que repara artefactos electrónicos y me regalo una webcam que no usaba, la **Ezonics EzCam USB II UVT8532**, mostrada en la imagen a la izquierda, los driver los tuve que buscar en Internet.

Lo fabricantes de esta cámara reconocen su sorprendente precisión en los colores, pero también la falta de detalles y la difícil adaptación de la cámara a ambientes con bajos niveles de iluminación.

La ventaja de usar sensores de **352 X 288** es que con menor cantidad de píxeles que uno de 640 X 480 la computadora maneja menor flujo de información y las capturas tienen mas cuadros útiles y mayor calidad de imagen, además los planetas nunca abarcan un gran tamaño en el sensor, y en el caso tratarse de extensiones mas grandes, como regiones de la luna el programa **Imerge** permite construir mosaicos con varias imágenes. esta cámara por ser mas antigua que la **Genius VideoCAM NB300** exige menores requerimientos, sus fabricantes recomiendan una velocidad mínima de procesador de

300 MHz y 32 MB de memoria RAM, su driver corre en Windows 98/2000 aunque yo lo instale en Window XP y no tuve el menor problema.

Pantalla Inicial de la Ezonics EZCam USB II

En el menú File/Set Capture File, establecemos el lugar donde queremos que se guarden los videos grabados con la cámara, y en el menú Options/Video Source, seleccionamos Restaurar Val. Predet, así quedara activada la Exposición Automática, regulando el programa el brillo de la imagen de manera automática, así como otras parámetros, también activara las opciones Espejo y Plegado Vertical, pero estas las desactivaremos pues invierte la perspectiva de la imagen.

🗿 VidCap - C:\CAPTURE.AVI	Origen de vídeo	?
File Edit Options Capture Help	Conjunto de propiedades de cámara 8532 Origen de	la captura Configuración de dispositivo
	Exposición automática Destino_AE Tiempo_exposición 800	Saturación 128% Valor Gamma 2.2
	Brillo 128 Contraste 128	Nitidez Fuerzalntensidad
	✓ Antiparpadeo ✓ Salida de vídeo ✓ 60Hz ○ 50Hz	Mejor Rápido Calidad 1
	Restaurar	val. predet.
📦 VidCap - C:\CAPTURE.AVI	vatorio\SALA DE CAPTUR 🗐 🗟 🔯	El video no debe ser
File Edit Options Capture Help File Edit Options Capi	ture Help	perdida de calidad en la
Load Palette Audio Form	at	imagen, esto lo configuramos
Set Capture File Video Forma	at	en el menú:
Allocate File Space Video Source	ė	Options/Compression , y
Save Captured Video As Video Displa	Write:	escogemos la opción Cuadros
Save Single Frame Compressio	n	Completos (sin compression).
Edit Captured Video		opción Preview , esta debe estar

Microsoft WDM Image Capture (Win32), Version: 5.1.2600...

activada para visualizar lo que esta captando la cámara en tiempo real.

Alt+F4

Exit

Los videos capturados con esta cámara muestran un marco blanco en el borde, no debemos capturar ningún videos con este marco pues los planetas puede moverse a través del sensor mientras capturamos el video y a la hora de apilar los cuadros en Registax se nos dañaría la imagen al superponerse estos marcos en diferentes lugares de la imagen apilada, por esto la captura la realizaremos en el programa **IRIS**, donde en el menú **Video/Video Capture** activamos la opción: **Crop** para recortar el video al capturarlo a partir de la zona interior del marco.

Allí introduciremos los siguientes valores para los siguientes tamaños en que hayamos configurado la captura del video: **Dimensiones del Video**, Una vez tomado el primer video las coordenadas de corte quedaran grabadas en el cuadro Crop del cuadro de dialogo **Video capture**, pero tenemos que activar la casilla **Crop** antes de capturar el video para que el corte del borde tenga efecto, esta es una ventaja cuando usamos mas de una cámara -como en mi caso- y solo queremos cortar el marco de una sola de ellas.

Crop	320 X 240	352 X 288	640 X 480
Horizontal	X1: 2, X2: 318	X1: 2, X2: 349	X1: 2, X2: 634
Vertical	Y1: 4, Y2: 238	Y1: 4, Y2: 286	Y1: 7, Y2: 476

Video capture			×
AVI file name : Index :	capture 2		GO
			Cancel
Incremental ind	ex	Crop	,
Capture duration :	10 sec.	×1 2	×2 634
Fréquency :	15 ips	Y1 7	Y2: 476

La Webcam Genius VideoCAM Look

Después de algunas pruebas me di cuenta que necesitaba una cámara de campo mas amplio para el telescopio guía, había pensado dejar la **Ezonics EZCam USB II** para este propósito, pero recordé una webcam que había comprado en Enero de 2006 y la tenia desarmada por tener un sensor CMOS VGA 640 X 480 lo cual la hacia correr muy lenta en mi antigua Pentium II, su profundidad de color es de 32 bits y dispone de Zoom in /out, justo lo que necesitaba para el telescopio guía, es la **Genius VideoCAM Look**.

En abril de 2009 la puse en operación con el telescopio reflector de 3" y 500 mm que usaba como guía, permitiéndome monitorear una zona más grande antes de usar el telescopio principal, además podía tomar videos de regiones más extensas de la luna, en los casos que necesitaba mas campo.

Los fabricantes recomiendan para esta webcam una velocidad mínima de Procesador de 400 MHz y 64 MB de memoria RAM, su driver Windows corre en 98SE/Me/2k/Win TWAIN Хр NetMeeting. Para pruebas de aumento y tamaño del campo vean la imagen de abajo donde muestro una región de la luna con las dos configuraciones de telescopios y cámaras.

En esta sección se puede ver el video de estas dos configuraciones.

	Image Control	-	Default
I Image I	Nince Flip 🥅 Image V	atical Flip	Reset
Brightness		37	Save
Contrast		27	Restore
Gamma		83	In/Out Door
Hun	·······	53	C Outdoor
Saturation	······	53	Indeer
Sharmass	· j	20	Flicker
Image Quality	(ī	← 50 Hz
/GA SnapSize)	VGA	Display
	Auto Mode Control		C LCD
JSB Bandwidt			
Exposure		- 17	T Backlight C
- WhiteBalanc	8		- -
Red	·	-7.	
Green	<u> </u>	- 12	T:
Blue		54 J.	:1:
			(.)L

En la imagen superior la Pantalla Inicial de la Genius VideoCAM Look

En el icono **A**, abrimos el cuadro de dialogo de la imagen izquierda para configurar la cámara.

Seleccionamos **Default/Reset**, para establecer los valores predeterminados, sin activar las opciones **Image Mirror Flip** e **Image Vertical Flip**, pues invierte la perspectiva de la imagen.

Para comenzar a grabar presionamos el icono **m**, y aparecen los botones de comienzo de grabación y detener, con

alejar la imagen, esto sirve para enfocar, aunque este siempre es mejor con el programa Selene, para desplazarnos en la imagen aumentada usamos estas flechas

para inicio del programa

este es el icono para salir del programa

, y este para una foto aunque como sabemos no lo vamos a usar.

Una vez decidido que iba a usar esta también esta webcam, construí su contenedor al igual que en la Genius NB.

Algunas imágenes de diferentes momentos de la modificación de la cámara, esta es una excelente cámara cara realizar cronometrajes de ocultaciones de estrellas por asteroides, explicado en este trabajo <u>Cronometraje de Capturas con Webcam</u>

Aspecto final de la cámara

La Webcam Genius iLook 300 VGA Instant Video

A finales del año 2010 adquirí la Webcam Genius iLook 300 VGA Instant Video, gracias a Luís Landin quien había comenzado en la fotografía planetaria y experimentando con estuvo varias cámaras, el encontró el buen rendimiento de la misma, las exigencias de esta cámara son mayores a las dos anteriores, sus fabricantes recomiendan una velocidad mínima de procesador de 2.4 GHz y 500 MB de memoria RAM, pero como veremos mas adelante podemos usarla en computadores de menor velocidad, su driver corre Windows en 7/Vista/XP/2000, posee un sensor de 640 X 480, nosotros vamos a instalar solo el Driver pero el Paquete de aplicaciones CrayzyTalk Cam Suite Pro no lo vamos a instalar ya que solo es para efectos de caricaturas en la imagen etc. Esta aplicación es la que muestra la pantalla

inicial del programa, pero nosotros controlaremos la cámara es desde el programa de captura **Iris** y **Selene** como ya hemos visto en trabajos anteriores, la primera razón es porque no vamos a usar la cámara sino para astronomía, la segunda porque a pesar de poder interpolar en la captura de video a **1280 x 960** y mas, estos son guardados en formato comprimido **WMV**, pero esto lo vamos a solventar desde Iris donde capturaremos como **AVI** son compresión.

El sensor de esta cámara posee el una cantidad de **640 x 480 píxeles** en un espacio algo mas pequeño que el espacio donde la **VideoCAM NB 300** tiene **352 x 288 píxeles**, de manera que al ser los píxeles casi de la mitad del tamaño que los de la NB (**2,952 µm**), cubre con cuatro píxeles lo que cubría la NB con uno, duplicándose la resolución, esto se comprueba en la imágenes inferiores, pero para poder ver la gran cantidad de detalles que recoge este sensor debemos interpolar al doble en la captura y esto lo haremos usando su **Zoom a 200%**, este no aumenta la imagen realmente, sino que nos muestra una

Comparación entre el sensor de 352 x 288 de la VideoCAM NB y el de 640 x 480 de la iLook 300 VGA Instat Video

El Zoom lo debemos usar a 200% para que se duplique la imagen, aunque en valores intermedios también he obtenido excelentes resultados, en el caso de no usar Zoom la superficie que ocupara un planeta en el sensor es casi la misma por ser los sensores de similar tamaño, con la diferencia que la cantidad de detalles será mayor, por eso procesaremos la imagen aumentada a 200% en el programa Registax en la opción Rezise de la pestaña Wavelets. A la derecha vemos el cuadro de controles de esta cámara, cuando tomamos imágenes de objetos débiles o usamos alto aumento en el telescopio activamos la opción Low Light, y para que se nos muestre la imagen visualizada correctamente debemos activar la casilla Blacklight Outdoor, У Compensation.

Image Mirror Brightness Contrast Gamma Hue Saturation Sharpness VGA SnapSize Zoom	Image Control	Light 100 8 65 0 150 8 200	Default Reset Save Restore In/Out Door In/Out Door Indoor Flicker 50 Hz C 60 Hz Extra Control	
USB Exposure White Balance Red Green Blue	Auto Mode Control Auto Mode Control	Auto	Backlight Compensation B/W Mode	

La imagen izquierda fue tomada con la **Genius VideoCAM NB300** en su formato original 352 x 288 y la de la derecha es con la misma cámara pero interpolando a 640 x 480, esta ultima imagen es mucho mejor.

En las dos imágenes de la siguiente pagina

vemos la misma antena tomada con la **Genius VideoCAM NB300** interpolada a 640 x 480 y con la **iLook 300** en su tamaño original 640 x 480, el tamaño es casi el mismo pero el nivel de contraste es superior, esto es evidente en el segundo par de imágenes de la pagina siguiente donde se muestra una puerta con un lámpara a través de una ventana vista con un telescopio de 15 cm, la calidad de la imagen es superior en estas escenas de bajo brillo.

Genius VideoCAM NB300 Interpolada a 640 x 480 y Genius iLook 300 VGA Instant Video a tamaño real 640 x 480

Genius NB interpolado a 640x480 y Genius iLook 300 VGA Instant Video a tamaño real 640 x 480

Esta es una prueba de un recipiente de pintura en la ventana de un edificio visto a través del mismo telescopio, a la izquierda es sin zoom, y a la derecha con el zoom a 200%, se puede ver que los niveles de detalles se mantienen a este nivel de aumento.

La menor cantidad de ruido, mayor sensibilidad tanto en el óptico como en el IR, sumada a odas estas pruebas y la captura en video del eclipse de luna del 21 de diciembre del 2010 cuyos resultados se pueden ver en el trabajo <u>Informe del Eclipse</u> <u>21-12-2010</u>, me hicieron tomar la decisión de trabajar en lo sucesivo con esta cámara a la que pase su electrónica a la carcasa que había construido en el año 2005 para mi la cámara **Genius VideoCAM NB300**, desde este momento es la cámara con que realizare imágenes planetarias, lunares y solares.

Genius iLook 300 VGA Instant Video a tamaño real 640 x 480 e interpolado mediante Zoom a 200%

OV7610/OV7110, OV7610 SINGLE-CHIP CMOS VGA COLOR DIGITAL CAMERA OV7110 SINGLE-CHIP CMOS VGA B&W DIGITAL CAMERA

Array Elements 644 x 484 Pixel Size 8.4 x 8.4 um Image Area 5.4 x 4 mm Exposure 500 : 1 Scan Mode progressive Correction 0.45/1.0 Minimum Illumination OV7610 -2.5 lux @ f1.4 OV7110 -0.5 lux @ f1.4 (3000K) S/N Ratio (Digital Camera Out) > 48 dB (AGC = Off, Gamma = 1) Power Supply 5VDC, ±5%